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“Heterogeneous treatment effects” is a term which refers to conditional average treatment effects (i.e., CATEs)
that vary across population subgroups. Epidemiologists are often interested in estimating such effects because
they can help detect populations that may particularly benefit from or be harmed by a treatment. However,
standard regression approaches for estimating heterogeneous effects are limited by preexisting hypotheses, test
a single effect modifier at a time, and are subject to the multiple-comparisons problem. In this article, we aim to
offer a practical guide to honest causal forests, an ensemble tree-based learning method which can discover as
well as estimate heterogeneous treatment effects using a data-driven approach. We discuss the fundamentals of
tree-based methods, describe how honest causal forests can identify and estimate heterogeneous effects, and
demonstrate an implementation of this method using simulated data. Our implementation highlights the steps
required to simulate data sets, build honest causal forests, and assess model performance across a variety of
simulation scenarios. Overall, this paper is intended for epidemiologists and other population health researchers
who lack an extensive background in machine learning yet are interested in utilizing an emerging method for
identifying and estimating heterogeneous treatment effects.

data science; effect modifiers; epidemiologic methods; honest causal forests; machine learning; precision
medicine

Abbreviations: AIPW, augmented inverse probability weighting; ATE, average treatment effect; CART, classification and
regression trees; CATE, conditional average treatment effect; EMSE, expected mean squared error; RCT, randomized controlled
trial; VIF, variable importance factor.

Epidemiologists and population health researchers are
often interested in estimating causal effects. An average
causal effect, also known as an average treatment effect
(ATE), is a population or samplewide measure that repre-
sents the effect of a specific treatment (or exposure) on an
outcome of interest (see Table 1). An ATE (on the abso-
lute scale) can be defined as the average of the difference
in potential outcomes, comparing results that would be
observed for an entire sample if everyone in the sample
were treated with those that would be observed for the same
sample if it were untreated (1).

While an ATE indicates the average expected change in
the risk of disease that would result from treatment across
an entire sample, this value does not necessarily correspond

to how a subgroup within the same sample would respond
to that treatment. To better capture this, one can instead
estimate the conditional average treatment effect (CATE),
which refers to the ATE specific to a subgroup defined by
a vector x of covariates (see Table 1). While CATEs are
scale-dependent—that is, whether the CATE is equal to or
different from the ATE depends on whether it was measured
on the relative or absolute scale—for the entirety of this
paper, we focus on estimates measured on the absolute scale.

Knowledge of CATEs is beneficial when the effect of
a treatment on disease varies substantially between sub-
groups of individuals within a population. For instance,
the effectiveness of statin medications in reducing choles-
terol levels differs based on the presence of certain single
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Table 1. Definitions of Estimands of Interest in Epidemiologic Studies

Estimand Mathematical Expressiona Definition

ATE 1
N

∑
i

[
Yi

a=1 − Yi
a=0]

The average of the difference in potential outcomes in a sample where everyone is
treated versus the same sample where everyone is untreated.

CATE 1
N

∑
i

[
Yi

a=1 − Yi
a=0| X = x

]
The average of the difference in potential outcomes in a specific stratum (defined by

a vector of covariates) where everyone in that stratum is treated versus everyone
in that stratum being untreated.

Abbreviations: ATE, average treatment effect; CATE, conditional average treatment effect.
a N, number of individuals in the sample; Y, potential outcome; a = 0, not treated; a = 1, treated; i, each individual in the sample; x, vector

of covariates.

nucleotide polymorphisms (2–5). Similarly, the effective-
ness of 2-dose severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) mRNA vaccination on immune
response may depend on age (6) and coronavirus disease
2019 (COVID-19) recovery status (7). Accordingly, one
should not always expect a given treatment to have the same
effect on everyone.

To detect whether CATEs vary across subgroups (i.e.,
to identify the presence of treatment effect heterogeneity or
effect-measure modification), researchers commonly include
a treatment-modifier product term in a regression model or
estimate treatment effects within modifier strata of one to
several a priori hypothesized modifiers of interest. While
these traditional approaches can help detect the presence of
prespecified effect heterogeneity, their reliance on a priori
hypotheses makes them ill-suited for discovering novel
variables which most contribute to such heterogeneity (8).
Furthermore, conducting hypothesis tests on many potential
effect modifiers is subject to the multiple-comparisons
problem. Data-driven hypothesis-generating approaches,
on the other hand, may help to circumvent this problem,
while also enabling the discovery of novel hypotheses on
heterogeneous effects across nonprespecified subgroups.

One category of data-driven methods, tree-based methods
(9, 10), refers to a group of algorithms which iteratively
partition (i.e., split) a sample into subgroups based on the
values of certain variables. To date, tree-based methods
have typically been used for the purpose of prediction.
However, in recent years, researchers have also described
their promise for uncovering and estimating heterogeneous
treatment effects in a causal setting (11–16). “Honest causal
forests” are one such tree-based method proposed for this
purpose (17). Several applications of the causal forest have
generated new hypotheses on potential effect modifiers,
although, in general, there remains a dearth of real-world
applications of honest causal forests to health-related ques-
tions (18–20). Past applications include a post hoc analysis
of a randomly allocated weight-loss intervention on cardio-
vascular disease–related mortality (18), a secondary analysis
of the effect of the Systolic Blood Pressure Intervention
Trial (SPRINT) on cardiovascular disease outcomes (19),
and a retrospective study of the effects of intensive glycemic
control on all-cause mortality within US-based diabetes
treatment trials (20).

Below, we discuss the honest causal forests method in
detail, beginning with an introduction to the collection of
methods from which it is derived: tree-based methods for
prediction (including classification and regression trees
(CART) and random forests). Understanding tree-based
methods for prediction helps ground the discussion for their
application in a causal inference setting. We then describe
both honest causal trees and honest causal forests, before
ending with an application of honest causal forests to simu-
lated data (in both randomized and observational settings).
Our practical guide serves as a conceptual and instructional
tool for epidemiologists interested in this method.

METHODS

Tree-based learning methods for prediction: CART and
random forest

Overview. Tree-based methods are data-driven algorithms
often utilized for predicting an outcome Y . The most basic
type of tree-based methods is CART, whereby classification
trees predict categorical outcomes and regression trees pre-
dict continuous outcomes (21); here, we focus our discussion
primarily on classification trees. A large advantage of tree-
based methods is their ability to flexibly account for complex
(including nonlinear) relationships between multiple vari-
ables in a manner that is more intuitive and easier to visualize
than most other models.

Recursive partitioning and the structure of trees. An example
of a CART prediction algorithm learned from data is de-
picted in Figure 1. In this illustration, an original sample of
700 individuals (located at the top-most node, known as the
root node) was initially split on the variable “age.” This first
split resulted in 2 mutually exclusive subsamples beneath
it (known as child nodes, in relation to the parent node).
From top to bottom, the tree was split into additional pairs
of nodes based on algorithm-selected levels of different
variables, with the goal of predicting an outcome. At the
bottom of the tree in the terminal nodes (also known as
leaf nodes), a final prediction is made for each individual.
When the outcome is dichotomous (yes/no), the prediction is
either yes or no, and when using a majority voting classifier,
this prediction will depend on the most common outcome
among individuals within that leaf. When the outcome is
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Root Node
(n = 700)

Age ≤40 Years

Node              
(n = 323)

Node              
(n = 377)

Leaf                            
(n = 25)

Prediction: 
CVD

Node              
(n = 298)

Node              
(n = 270)

Node              
(n = 107)

SBP ≤147 mm Hg SBP >147 mm Hg BMI ≤30 BMI >30

Diabetes
No 

Diabetes HDL-C ≤34 mg/dL HDL-C >34 mg/dL
Male Female

Leaf                            
(n = 39)

Prediction: 
CVD

Leaf                            
(n = 259)

Prediction: 
No CVD

Leaf                            
(n = 40)

Prediction: 
CVD

Leaf                            
(n = 230)

Prediction: 
No CVD

Leaf                            
(n = 51)

Prediction: 
CVD

Leaf
(n = 56)

Prediction: 
No CVD

Age >40 Years

Figure 1. Hypothetical example of a classification and regression trees (CART) prediction algorithm. Individual nodes (pictured here as
rectangles), which contain individuals within a given sample, are iteratively split into a pair of nodes beneath them (known as child nodes).
These splits occur across values of covariates selected by the algorithm, with the goal of predicting an outcome (which in this example is
cardiovascular disease (CVD)). Nodes without any arrows emanating from them are known as leaf nodes. BMI, body mass index; HDL-C,
high-density lipoprotein cholesterol; SBP, systolic blood pressure.

continuous, the prediction is typically computed as the
expectation of Y among individuals in that leaf. Accordingly,
every individual belonging to the same leaf receives the same
prediction.

The goal of CART is to build a tree through the minimiza-
tion of a loss function tailored to maximize homogeneity
within nodes. As such, when learning a tree, splits are per-
formed with the objective of grouping together individuals
who share similar outcome values. During this iterative
process, the CART algorithm will select the variable split
(among all potential splits) at each node which maximizes
improvement in node purity, defined as how homogenous
the observed outcomes are within individual nodes (22).
A commonly utilized measure of node purity is the Gini
index, as defined in equation 1 (10, 23). Here, a Gini index
value of 0 corresponds to a perfectly homogenous (i.e., pure)
node, whereas values closer to 0.5 indicate considerable
heterogeneity within a node.

The Gini index (G) is defined as follows.

G =
K∑

k=1

p̂mk
(
1 − p̂mk

)
(1)

In equation 1, p̂mk is the proportion of observations in a given
node m belonging to class k.

There are 2 general approaches for creating splits within
a CART algorithm, “greedy” and “nongreedy” algorithms,
which prioritize purity at different nodes. In greedy algo-
rithms—which are most commonly used due to the compu-
tational intensity of nongreedy ones—each split is chosen
to optimize, for example, node purity at each of the 2 child
nodes relative to its parent node. Meanwhile, nongreedy

algorithms choose splits with the goal of globally optimizing
node purity throughout the entire tree (24). This splitting
process continues down the tree until reaching a stopping
criterion. The stopping criterion is determined by a variety of
hyperparameters that are prespecified by the user, including
but not limited to the minimum number of people allowed
in each leaf and the maximum number of leaves allowed
in the tree (9). If none of the potential splits can meet the
criteria of the stopping criterion, then no more splits are
made, resulting in the final model.

To help ensure optimal model performance, an approach
known as pruning can be incorporated into the CART model-
building process. A detailed overview of pruning can be
found in An Introduction to Statistical Learning by James
et al. (22). In short, pruning is an approach which reduces
the size of the tree by allowing splits to occur only if they
result in an improvement in node purity that exceeds some
large threshold. A commonly cited advantage of pruning is
that it can help to reduce overfitting (9). In an overfitted tree,
the algorithm is fitted well (i.e., low bias) to the training
subsample but is unlikely to perform favorably in external
populations.

Random forest: an ensemble approach to CART. While
pruning can help to reduce overfitting in CART to some
extent, a commonly cited disadvantage of single tree-based
algorithms is that they can still be unstable with small per-
turbations in data, leading to drastic changes in accuracy and
error. To counteract such instabilities, ensemble approaches
(i.e., those that utilize a combination of algorithms) can be
used instead. One such commonly used ensemble approach
is known as a random forest (25). A random forest is an
ensemble of many classification or regression trees.

Am J Epidemiol. 2023;192(7):1155–1165

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/192/7/1155/7056288 by U

niversity C
ollege London user on 10 M

ay 2024



1158 Jawadekar et al.

In a random forest algorithm, bootstrapping is performed,
whereby repeated random subsamples of the data set are
selected (with replacement) and used to create each of the
different trees in the forest. In addition, the variables con-
sidered in each splitting step within each tree are randomly
selected—hence the term “random” forest (10). Both of
these elements are designed to help reduce the variance
of predictions without significantly compromising on bias.
The predictions that are made across each of the trees are
then aggregated (typically through either averaging, major-
ity voting, or some other prespecified approach) in order
to make a final prediction for every individual. Random
forests have generally been shown to yield superior model
performance (i.e., predictive accuracy) in comparison with
CART, as they harmonize results from multiple diverse trees
that utilize a variety of different variables, variable splits, and
observations (25, 26). Furthermore, the set of observations
not included in a tree’s bootstrapped sample is known as the
“out-of-bag sample.” The model performance of the random
forest can be assessed by making predictions on this out-
of-bag sample—that is, by using only the trees that did not
include each observation in its bootstrapped sample (22).
Cross-validation approaches (e.g., the validation set method
and k-fold cross-validation) can alternatively be used to
assess model performance (22).

After building a random forest, one might also be inter-
ested in understanding the variables that were most influ-
ential on the predictive model. To investigate this, one can
assess “variable importance,” which indicates the extent to
which a variable contributed to predictive accuracy, node
purity, or other relevant measures of model performance.
There are several different ways in which variable impor-
tance can be measured, with the 2 most common ones being
permutation importance (27) and node impurity importance
(28). Regardless of the specific metric used, the most com-
monly used software implementations of random forest pro-
vide a ranked list of the “variable importance factor” (VIF),
indicating the variables that most contributed to the model’s
performance.

Honest causal trees and honest causal forests

Over the past decade, scholars have developed modifica-
tions to the CART and random forest algorithms to make
them relevant for identifying heterogeneity of treatment
effects within samples. One tree-based method in particular,
an “honest causal forest,” can be used to help identify poten-
tial heterogeneous subgroups as well as estimate pointwise
consistent CATEs with asymptotically normal confidence
intervals (17).

Honest causal forests are conceptually similar to random
forests, except that rather than maximizing the homogeneity
of the outcome within nodes, they are designed to maximize
the heterogeneity of treatment effects across nodes (11).
An honest causal forest is made up of multiple “honest
causal trees,” and here “honesty” (also known as cross-
fitting, which is utilized in a variety of machine learning
methods (29–31)) refers to the requirement that the data
used for making splits be distinct from the data that are used
to estimate treatment effects. Most importantly, both honest

causal trees and honest causal forests rely on the assumption
of there being exchangeability within leaf nodes. These 2
algorithms will be further discussed below.

Honest causal trees. An honest causal tree is a single tree
algorithm which structurally resembles a classification or
regression tree, but it is unique in that it is designed to
partition a sample in order to maximize heterogeneity of
CATEs across the child nodes that result from each partition
(11). Unlike a classification or regression tree, which focuses
on the prediction of Y , an honest causal tree’s main outcome
of interest is the CATE at each leaf, which is defined as
E

[
Ya=1|X = x

] − E
[
Ya=0|X = x

]
when the treatment is

binary. The vector x that defines a given leaf or stratum is
equivalent to the covariate splits that created it, where the
goal is to create splits that maximize the heterogeneity of
CATEs between nodes. However, valid inference of these
conditional effects relies on several key assumptions—most
notably, the assumption of exchangeability within leaf nodes
(specific methods for addressing nonexchangeability are
discussed below). If we assume that this exchangeability
assumption can be met in the honest causal tree example
depicted in Figure 2, along with the other causal assump-
tions, then the first estimated CATE of −0.19 means that for
individuals who are under age 50 years, are negative for the
ε4 allele of the apolipoprotein E gene (APOE-4), and have
uncontrolled levels of low-density lipoprotein cholesterol in
midlife, the effect of treatment (A = 1) results in an absolute
risk reduction of 19 percentage points.

To help estimate valid CATEs, Wager and Athey (17)
also encourage the use of an “honest” (i.e., cross-fitting)
approach, whereby a random half of the data set (splitting
subsample J) is used to build the tree and the other half of the
data set (estimating subsample I) is kept for estimating the
CATEs at each leaf. When applied to honest causal forests
(described below), this process of randomly splitting the
data set into 2 subsamples occurs iteratively across each
of the causal trees within an honest causal forest. Such an
arrangement helps to mitigate overfitting, since each tree
utilizes a different subsample.

To be clear, identification of CATEs from observed data
requires typical causal assumptions, including consistency
(where the observed Y is equal to the potential outcome Ya

under the same treatment), positivity (where everyone must
have a nonzero probability of receiving all possible values
of the treatment, conditional on covariates x) (32), and con-
ditional exchangeability (equation 2), whereby the potential
outcomes Ya=1 and Ya=0 are independent of the treatment
assignment A, conditional on the values of covariates x that
define each leaf (11, 33).

Conditional exchangeability is expressed as

A (Ya=0, Ya=1) | X = x. (2)

In equation 2, A is the treatment assignment, Ya=0 and Ya=1

are potential outcomes, and x is a vector of covariates that
defines a subgroup.

In a typical randomized trial setting, the exchangeability
assumption can be reasonably satisfied assuming that there
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Entire Cohort                        
(ATE = −0.10 (SE, 0.02))

Age <50 Years Age ≥50 Years

APOE-4-Negative APOE-4-Positive Nondiabetic Diabetic

Uncontrolled LDL-C 
Levels in Midlife

Normal LDL-C 
Levels History 

of CVD
No CVD     
History

Nonsmoker

No Hypertension

Smoker

Hypertension

CATE = −0.19
(SE, 0.07)

CATE = −0.09
(SE, 0.04)

CATE = −0.20
(SE, 0.08)

CATE = −0.13
(SE, 0.10)

CATE = −0.03
(SE, 0.05)

CATE = −0.10 
(SE, 0.05)

CATE = −0.14
(SE, 0.09)

CATE = −0.07
(SE, 0.11)

Figure 2. Hypothetical example of an honest causal tree. In an honest causal tree, individual nodes (pictured here as rectangles) are iteratively
split into additional nodes, with the goal of maximizing heterogeneity of treatment effects between each of the nodes. Conditional average
treatment effects (CATEs) for specific individual(s) can be estimated at the bottom of the tree (in the leaf nodes). APOE-4, ε4 allele of the
apolipoprotein E gene; ATE, average treatment effect; CVD, cardiovascular disease; LDL-C, low-density lipoprotein cholesterol; SE, standard
error.

are no other major sources of bias (e.g., attrition) and given
that everyone has an equal probability of receiving the
treatment. However, satisfying the assumption of exchange-
ability is more challenging in observational settings, where
treatment assignment is not independent of potential out-
comes to begin with. In an honest causal tree, the covariate
values (x) that define a given node are chosen strictly on
the basis of their ability to help maximize heterogeneity of
treatment effects, regardless of their influence on achieving
conditional exchangeability. Therefore, we cannot reason-
ably expect that the variables which influence heterogeneity
of effects are the same as the variables that also produce con-
ditional exchangeability within strata. However, there exist
multiple approaches which can help reduce confounding and
hence suggest that conditional exchangeability is closer to
being met when estimating treatment effects in an honest
causal tree (or honest causal forest).

In one such approach, known as R-learner (derived from
Robinson’s transformation (34)), rather than estimating
the treatment effect of the observed treatment (A) on the
observed outcome (Y), one instead models the effect of the
residual treatment on the residual outcome, whereby the
residual represents the difference between an individual’s
observed and predicted values of that variable (as a function
of a set of covariates) (29, 34–36). If we assume that the pre-
dictive models for A and Y captured variables that comprise
a sufficient set to establish conditional exchangeability and
that these models were correctly specified (i.e., they elim-
inate backdoor paths between the exposure and the out-
come), then an honest causal tree modeled on the residuals
should be expected to isolate the sources of heterogeneity
(in the absence of confounding). To further reduce the
possibility of violating the conditional exchangeability as-
sumption, one should carefully consider the variables in-

vestigated as potential effect modifiers, since stratification
on colliders or mediators of the A-Y relationship could po-
tentially threaten this assumption. A supplementary approach
that has been applied to address confounding is augmented
inverse probability weighting (AIPW); this method com-
bines an inverse-probability-of-treatment weight with a
weighted average of the outcome model, with both models
being conditional on a set of covariates. In short, AIPW
enables doubly robust estimation of treatment effects in
honest causal forests. More information about AIPW can be
found elsewhere (37–39).

To accomplish its goal of identifying heterogeneous sub-
groups, the honest causal tree algorithm creates splits by
utilizing an expected mean squared error (EMSE) cri-
terion equation, as described by Athey and Imbens (11)
(equation 3).

The estimator of the EMSE for an honest causal tree is

− ̂EMSEτ

(
Str, Nest, �

) = 1

Ntr

∑
i∈Str

τ̂2 (
Xi; Str, �

)

−
(

1

Ntr + 1

Nest

)
×

∑
l∈�

(VStr(l)) .

(3)

In equation 3, − ̂EMSEτ is the estimator of the EMSE of
the treatment effect (τ), where τ is defined as E[Yi(1) −
Yi(0) | Xi] ∈ l (x; �), Yi is the potential outcome, Xi is the
vector of covariates, l is a given leaf node, � is a specific
partition, Str is the training sample, Ntr is the size of the
training sample, i is a specific observation within the training
sample, Nest is the size of the estimating sample, and VStr(l)
is the within-leaf variance for treated individuals.
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Table 2. Difference Between a Regression Tree and an Honest Causal Treea

Regression Tree Honest Causal Tree

Outcome of interest is Y. Outcome of interest is the CATE, E
[
Ya=1| X = x

] − E
[
Ya=0| X = x

]
,

within a given stratum defined by a vector of covariates.

Most common use case is for prediction. Most common use case is for detecting effect modifiers and
estimating heterogeneous causal effects.

Algorithm is designed to select covariates which minimize
prediction error and maximize node purity.

Algorithm is designed to select covariates which maximize
heterogeneity in treatment effects between the leaves, while
minimizing variance within each treatment effect.

No exchangeability assumption is needed to predict Y. Conditional exchangeability must be satisfied to validly estimate
CATEs.

Abbreviation: CATE, conditional average treatment effect.
a Y, potential outcome; a = 0, not treated; a = 1, treated; x, vector of covariates.

This equation shows that for a given tree’s partition, �,
using training sample Str and an estimation sample of size
Nest, − ̂EMSEτ is an estimator which represents the mod-
ified mean squared error that is expected as the result of
a specific partition. This estimator is comprised of 2 main
terms. First, the term 1

Ntr

∑
i∈Str τ̂2

(
Xi; Str, �

)
represents the

amount of heterogeneity in treatment effects that exists
across the different leaves. Furthermore, the penalty term,
−( 1

Ntr + 1
Nest

)×∑
l∈� (VStr(l)), assesses how much variance

exists within individual leaf (l) estimates. An honest causal
tree ultimately chooses the covariate split which maximizes
the heterogeneity between treatment effects of leaves, while
also minimizing the variance of conditional estimates within
leaves. Because this criterion includes a term that penalizes
variance, this will result in a relatively greater number of
observations within each leaf, by default, than would other-
wise arise.

A summary of some key differences between a regression
tree and an honest causal tree can be found in Table 2.

Honest causal forests. An honest causal forest is an ensem-
ble (i.e., a method that combines many models (22)) of
multiple honest causal trees. Like a random forest, honest
causal forests utilize random samples of observations in each
tree, as well as a random selection of covariates at each split.
Furthermore, estimation of CATEs in honest causal forests
differs slightly from that of honest causal trees. Rather than
estimating the CATEs for a subgroup at an individual leaf of
the tree (which occurs in an honest causal tree), in an honest
causal forest, a CATE for a unique set of covariate values
(x) is estimated by averaging the treatment effect of that
subgroup across all of the trees (17). This estimation occurs
by taking one observation or a set of observations and then
running each of them through the trees in the honest causal
forest which did not utilize them to build the tree (i.e., out-of-
bag observations are used to obtain causal estimates). Equa-
tion 4 shows how honest causal forests calculate CATEs by
averaging estimates, τ̂, across those B honest causal trees.
Standard errors for these estimates, along with 95% confi-
dence intervals, can also be computed (17).

CATE estimation in the honest causal forest method is
performed as follows.

τ̂(x) = 1

B

B∑
b=1

τ̂best(x) (4)

In equation 4, τ̂ is the estimated CATE for individual(s)
defined by their covariates (x). This estimation occurs by
averaging tree-specific CATEs of those individuals (τ̂best )
across B honest causal trees (with each honest causal tree
built on a Bth bootstrapped sample). Here, only trees which
did not contain such individuals in their training sample are
utilized.

While an honest causal tree is easy to visualize (because it
is only 1 tree), honest causal forests have been alternatively
proposed because of their characteristics, which are more
conducive to producing pointwise consistent estimates with
asymptotically normal properties (17). An honest causal
forest’s use of honest splitting (also known as cross-fitting)
is intended to address a key requirement for consistent
estimation, which is for the outcome and treatment model
estimators to not be too adaptive (i.e., the “Donsker condi-
tion”) (17, 29, 30). Although some literature suggests that
honest causal forests may still not yield sufficient coverage
of confidence intervals (40), particularly in settings with
high dimensions, other simulations have demonstrated that
under certain conditions (e.g., ≤15 covariates) they can
perform better—in terms of bias and confidence interval
coverage—than other data-driven methods, such as the k-
nearest neighbors method (17). Some advantages and disad-
vantages of honest causal forests are summarized in Table 3.

Finally, in contrast to random forests, where the VIF
typically assesses the extent to which specific variables con-
tributed to the predictive accuracy of the outcome, variable
importance in honest causal forests can be calculated by
assessing the degree to which each covariate contributed to
heterogeneity between CATEs for the research question of
interest (i.e., the effect of A on Y). Here, variable importance
is typically quantified by weight-summing the number of
times each variable was used to split the sample throughout
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Practical Guide to Honest Causal Forests 1161

Table 3. Advantages and Disadvantages of Honest Causal Forests

Advantages Disadvantages

Algorithm identifies unspecified heterogeneous subgroups in an
intuitive manner.

Like random forests, not as easy to visualize as a single tree.

Treatment effects are pointwise consistent, with normally
distributed and asymptotic confidence intervals.

Correct identification of effect modifiers may depend upon sufficient
sample size.

R-learner and AIPW combined with honest causal forest may help
satisfy the conditional exchangeability assumption.

Conditional exchangeability may be especially challenging to satisfy
in an observational setting.

Abbreviation: AIPW, augmented inverse-propensity weighting.

the forest (weighted by the depth of the tree where each split
occurred, with splits near the top of a tree corresponding to
larger weights) (41). While variable importance may serve
as a useful tool for identifying potential effect modifiers,
Athey et al. (42) have also described alternative approaches
for summarizing heterogeneity of CATEs learned by honest
causal forests. For example, they suggest comparing the
average values of covariates within quartiles of the CATEs
that were estimated across the honest causal forest.

Implementation in R

In this implementation, we walk through an example
application of honest causal forests to simulated data. We
provide readers with a list of steps required to simulate data
sets, build honest causal forests on those data sets, and assess
model performance across a variety of simulation scenarios
(see the Web Appendix, available at https://doi.org/10.1093/
aje/kwad043). Each simulated data set is comprised of a
dichotomous treatment assignment (A), 20 covariates (X)
including 10 dichotomous variables and 10 continuous vari-
ables, and a dichotomous outcome (Y), with no individuals
lost to follow-up. The covariates (X) include a categorical
effect modifier (variable B) and a continuous effect modifier
(variable N).

Within our simulations, we generate 2 distinct settings: a
randomized controlled trial (RCT) setting and an observa-
tional setting. In the RCT setting, in expectation, treatment
was independent of all covariates, and in the observational
setting we simulated confounding of the treatment-outcome
relationship. Within each setting, we run 6 different sce-
narios of sample size and number of trees, across 2 dif-
ferent types of data sets based on realistic settings: one in
which there is high correlation between covariates and small
differences between CATEs, and another in which there
is low correlation between covariates and large differences
between CATEs. These scenarios are selected to cover the
default number of trees in the causal_forest function of the
grf package in R (2,000 trees per honest causal forest) and
are also grounded in a realistic range of sample sizes (41, 43–
45) and covariate correlations (46–48) from prior literature.
Furthermore, in our observational setting, we implement
each of these scenarios across 2 doubly robust estimators:
one in which the propensity models for the treatment and
outcome variables are appropriately adjusted for covariates

and the other in which those same models are unadjusted.
Specifically, for proof-of-concept purposes, the unadjusted
models are intentionally misspecified by excluding covari-
ates from them; by ignoring these covariates, we expect there
to be bias in the CATEs under study. Overall, we examine a
total of 24 observational simulation scenarios and 12 RCT
simulation scenarios. For each of these 36 scenarios, we run
1,000 simulations. Web Table 1 displays complete details
regarding the parameterization of each simulation scenario.

We build honest causal forests on each simulated data set
using the grf package (41) and the causal_forest function
in R (R Foundation for Statistical Computing, Vienna, Aus-
tria); in addition, we use R-learner (36) and AIPW (39) to
enable doubly robust estimation of treatment effects. The
model performance of the honest causal forests built on each
of our simulated data sets was assessed by summarizing
the extent to which the algorithm 1) correctly identified the
covariates (variables B and N) contributing to heterogeneity
and 2) accurately estimated the 4 prespecified CATEs, in
terms of bias of the point estimates as well as the coverage
provided by the confidence intervals. The identification of
covariates was assessed using the grf package’s default
variable importance metric—a type of node impurity impor-
tance—which weight-sums each variable’s number of splits
in the causal forest by the depth at which each split occurred.
As a supplementary approach to identify potential effect
modifiers, we also assess the average values of covariates
within quartiles of the CATEs that were estimated across the
honest causal forest (42). Meanwhile, the CATEs and cor-
responding 95% confidence intervals were estimated using
the doubly robust AIPW estimator built within the package.
Our simulations were run using R 4.1.1; the R software
code for this implementation, along with accompanying
documentation, can be found on GitHub (49) and in the Web
Appendix.

RESULTS

For each of the described scenarios in Web Table 1 (i.e.,
12 RCT scenarios and 24 observational scenarios), we
simulated 1,000 randomized controlled data sets and built
1,000 corresponding honest causal forests. In Web Table
2, for each of the simulation scenarios, we display ranked
lists of the “important” variables (i.e., the covariates most
contributing to heterogeneity of treatment effect estimates)
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that were calculated on the basis of the VIF averaged across
all 1,000 simulations. For the RCT simulations, among
scenarios with high correlation between covariates and small
differences in CATEs, 0 out of 2 (0%) simulations using a
sample size of 1,000, 2 out of 2 (100%) simulations using
a sample size of 10,000, and 2 out of 2 (100%) simulations
using a sample size of 40,000 were able to correctly identify
the 2 prespecified effect modifiers (variables B and N)
as the 2 variables most highly ranked by the VIF. For
comparison, among RCT simulation scenarios with low
correlation between covariates and large differences in
CATEs, 6 out of 6 (100%) simulations correctly identified
the continuous effect modifier N. However, within these
same RCT simulations (low correlation and large differences
in CATEs), only scenarios using a sample size of 40,000
correctly identified categorical variable B as one of the 2
most highly ranked variables.

In the observational setting, 0 out of 8 (0%) simulations
using a sample size of 1,000, 0 out of 8 (0%) simulations
using a sample size of 10,000, and 8 out of 8 (100%)
simulations using a sample size of 40,000 were able to cor-
rectly identify both prespecified effect modifiers (variables
B and N). However, the continuous effect modifier (N) was
identifiable in all of the observational simulations with at
least 10,000 individuals in each sample. Furthermore, within
these observational scenario simulations, there were limited
differences in the model’s ability to identify the effect modi-
fiers between the versions where the doubly robust estimator
was derived from a covariates-adjusted model versus when
it was based on an unadjusted model. However, we caution
that these results may be attributable to the simple data-
generating mechanism which we implemented for demon-
stration purposes.

In Web Table 3, we report the CATEs and correspond-
ing 95% confidence intervals (defined across levels of our
2 prespecified effect modifiers) that were estimated, on
the average, within each simulation scenario. As shown,
across the various RCT simulations, the absolute value of
the percent difference between the average observed CATE
and the corresponding true CATE never exceeded 18%.
Furthermore, among RCT simulations utilizing a sample
size of 40,000, the absolute value of the percent difference
between the average observed CATE and the corresponding
true CATE never exceeded 4%. These RCT-specific results
demonstrate the extent to which honest causal forests could
accurately estimate CATEs across levels of the prespecified
effect modifiers, assuming those effect modifiers (and cor-
responding a priori hypotheses) could first be identified.

Meanwhile, in the observational simulations where the
doubly robust estimator was adjusted, the absolute value of
the percent difference between the average observed CATE
and the corresponding true CATE never exceeded 19%.
However, as anticipated, among the observational simula-
tions where the doubly robust estimator was unadjusted (i.e.,
confounding was not accounted for), this absolute value of
the percent difference was as great as 84%. Furthermore,
confidence interval coverage performed well in observa-
tional simulation scenarios using an adjusted doubly robust
estimator; coverage never fell below 86.1% in such scenar-
ios, whereas coverage fell as low as 48.7% in observational

scenarios which did not use this adjusted doubly robust
estimator.

DISCUSSION

In this practical guide, we discussed the foundations of
tree-based algorithms, described the methodological basis
of honest causal forests, and walked through an imple-
mentation of this method in simulated data. Our concep-
tual overview and simulations suggest that honest causal
forests could be useful for generating new hypotheses on
heterogeneous treatment effects in a variety of research
settings. In our simulation study, while CATE estimation
was biased and coverage probabilities were poor in observa-
tional settings using misspecified (i.e., unadjusted) propen-
sity models, such performance improved when appropriately
controlling for confounding (through R-learner and AIPW)
(36, 39), and they were additionally improved by the pres-
ence of lower levels of heterogeneity between the CATEs
of interest. Furthermore, given a sufficient sample size,
the honest causal forests could successfully identify the
true effect modifiers across a variety of randomized and
observational simulations. While the honest causal forests
performed unexpectedly well at identifying relevant effect
modifiers in observational settings that were unadjusted,
we acknowledge that these favorable results may be a con-
sequence of the simple data-generating scheme we imple-
mented for demonstration purposes (i.e., to show using a toy
example how confounder adjustment can be incorporated
into the approach to reduce bias in the estimated CATEs).

Our paper expands on the existing literature in a variety
of ways. First, we offer a practical guide to honest causal
forests, tailored for epidemiologists and other health re-
searchers with limited prior knowledge of machine learning.
Second, we explored the practical operating properties of
this method in a wide range of scenarios (with varying levels
of heterogeneity, correlations between covariates, sample
sizes, doubly robust estimators, and research settings).
Further, in contrast to Athey et al. (11, 50), we assessed the
extent to which the method could correctly identify effect
modifiers, which may help inform the specific types of sce-
narios in which honest causal forests may perform best (in
terms of CATE estimation and effect-modifier discovery).
For example, we demonstrate that sample size has more of
an impact on performance than the number of trees; in all of
the scenarios in which there were 40,000 individuals, honest
causal forests could correctly identify the 2 prespecified
effect modifiers of interest. We also showed that in certain
settings (e.g., a sample size of 10,000), we were better able
to identify the continuous effect modifier (N) than the cat-
egorical effect modifier (B). Although one limitation of this
study is that we only explored scenarios in which there were
20 covariates, Athey et al. have already demonstrated the
performance of estimating CATEs across varying numbers
of dimensions (50). Future work could also benefit from
explorations into how the number of dimensions additionally
affects one’s ability to correctly identify effect modifiers.
Lastly, we acknowledge that while we performed a variety of
simulations in a number of scenarios, we cannot practically
guarantee that performance from our study will reflect how
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honest causal forests will perform in the real world, espe-
cially in observational settings, given that, for illustrative
purposes, we used simplistic data-generating mechanisms.

The unique contribution of honest causal forests is that
they offer a rigorous approach to the identification of poten-
tial treatment effect heterogeneity when the goal is hypothe-
sis generation. This tree-based algorithm avoids the problem
of multiple hypothesis-testing altogether by using an itera-
tive partitioning rule to select the covariates that maximize
heterogeneity of effects. This feature makes it a particu-
larly appropriate method in research settings where there
is limited understanding of heterogeneity of effects, or in
scenarios where there exist numerous covariates for which
it would be overly burdensome to conduct traditional sub-
group analyses across each variable. In our simulation study,
although we used a simple data-generating scheme, we
showed that the effect modifiers of interest could be correctly
identified (using the VIF metric) across multiple randomized
and observational scenarios. Even still, we acknowledge
that in practice, VIF should not be directly interpreted as
the ground truth for causal effect modification, particularly
because variables correlated with true effect modifiers could
still plausibly be picked (e.g., we found that covariates which
were correlated with the “true” effect modifiers were often
found near the top of the VIF lists). As such, we caution
that our approach for identifying potential effect modifiers
should be considered a hypothesis-generation tool and not a
causal discovery tool. Additionally, to augment our approach
for identifying potential effect modifiers, which may be
vulnerable to spurious effect modification, in our tutorial we
demonstrate a supplemental method for identifying potential
effect modifiers recommended by Athey et al. (42), whereby
the average values of covariates within quartiles of the
estimated CATEs are visualized (Web Figure 1).

Amidst the rise of “big data” science and high-dimensional
data sets, honest causal forests hold great potential for
helping researchers understand how the effect of a treatment
may vary across a population. Yet, honest causal forests have
not been widely adopted by epidemiologists thus far, perhaps
because it is a newly developed and complex algorithm,
and few examples of its implementation exist in the field,
particularly using observational data. To address this gap,
this paper serves as a practical resource guide for researchers
seeking to better understand how honest causal forests work,
prior to applying them towards the identification of potential
effect modifiers. While underutilized in public health and the
medical sciences thus far, honest causal forests offer promise
for the future. We hope our walk-through of this method
helps to inspire greater awareness and adoption of honest
causal forests, which could ultimately lead to important
discoveries in health care.
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